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SUMMARY

A numerical investigation is performed for the constant property laminar flow of air in the space between
a pair of disks clamped co-axially on a central hub and co-rotating in a stationary cylindrical enclosure.
Both two- and three-dimensional flow conditions are examined in relation to the interdisk spacing, H,
and the disk angular velocity, V. Two interdisk spacings are considered, corresponding to aspect ratios
G=0.186 and 0.279 (with G=H/(R2+a−R), where R2 is the disk radius, a is the disk rim–enclosure
wall clearance, and R is the hub radius). A range of rotational speeds encompassing the transition from
axisymmetric two-dimensional steady flow to non-axisymmetric three-dimensional unsteady flow is
considered for various values of the Reynolds number, Re (with Re=VR2

2/6, where 6 is the kinematic
viscosity of air). Axisymmetric calculations are first performed for both aspect ratios in the range
38585Re523 150. Fully three-dimensional calculations are then performed for the configuration with
G=0.186 and Re=23 150, and for the configuration with G=0.279 and Re=7715, 15 430 and 23 150.
The axisymmetric calculations performed with G=0.186 confirm many known features of the flow,
including the transition from a steady flow to an oscillatory periodic regime. This occurs at :Re=
23 150 for a configuration with a/H=0, and at :Re=14 670 for one with a/H=0.28 and a finite disk
thickness (b/H=0.2). Three-dimensional calculations performed for G=0.186 with a/H=0 and Re=
23 150 reveal a circumferentially periodic flow pattern with eight foci of intensified axial component of
vorticity. The axisymmetric calculations performed with G=0.279 and Re\7715 yield a novel, non-
unique steady solution for the velocity field that is asymmetric with respect to the interdisk mid-plane. No
experimental verification of this finding exists to date, but similar situations are known to arise in the
context of anomalous modes of the Taylor–Couette flow. Relaxing the axisymmetry constraint allows
this flow to evolve to an oscillatory three-dimensional regime of increasing irregularity with increasing
rotational speed. In this case, the number of foci of intensified axial vorticity varies with time, ranging
from six at Re=7715 to between six and eight at Re=23 150. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. The problem of interest and prior work

The flow configuration of interest is shown in Figure 1. It consists of a pair of disks clamped
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co-axially on a central hub that rotates in a stationary cylindrical enclosure. Small aspect ratios
are considered since they are especially relevant to industrial and technical applications. The
constant-property laminar flow of air between the two co-rotating disks is calculated using a
second-order-accurate (in space and time) numerical procedure that solves discretized forms of
mass and momentum conservation equations subject to appropriate initial and boundary
conditions. The flow configuration is investigated in relation to two parameters: the dimension-
less aspect ratio, G, and the Reynolds number, Re, defined above. The aspect ratios considered
are 0.186 and 0.279, and the values of the Reynolds number range from 3858 to 23 150,
corresponding to rotation rates ranging from 50 to 300 rpm.

The configuration of coaxial disks co-rotating in a cylindrical enclosure provides a useful
model for investigating flows in the hard disk drives used as data storage devices in computers.
A better understanding of the complex unsteady flows that arise in disk storage devices is
essential for their improved design and repeatable operation. A disk storage system consists of
a stack of equidistant, centrally clamped disks co-rotating in a non-axisymmetric enclosure.
The electronic data are distributed along micron-sized circular tracks on the disk surfaces.
Data transfer to and from the disks is accomplished by means of magnetic heads suspended at
sub-micron distances from the rotating disk surfaces by rigid supports. Very small dimensions
and high speeds of rotation are required to obtain high data transfer rates and, currently,
important issues include minimizing track misregistration and viscous dissipation of mechani-

Figure 1. Sketch showing the flow configuration of interest. This consists of a pair of disks clamped on a central hub,
co-rotating in a fixed cylindrical enclosure. The basic flow regions (I–V) induced in the interdisk space are sketched
in accordance with previous studies [4]. In the bulk of the calculations, R1=56.4 mm, R2=107.7 mm, H=9.53 mm
or 14.3 mm, a=0, and b=0. Selective calculations have been performed with R1=56.4 mm, R2=105.0 mm, H=9.53
mm, a=2.7 mm, and b=1.91 mm. The latter values correspond exactly to an experimental configuration used in

other studies [4,6,7,20].
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cal energy into heat. As the sizes of modern drives decrease, the associated flows include both
laminar and turbulent regimes because the disk angular velocity, V, varies linearly and R2 (the
disk radius) varies quadratically in the definition of the Reynolds number. In this regard, the
investigation of an idealized unobstructed laminar flow system is a very helpful first step.

As discussed below, the present unobstructed configuration has been previously studied by
various authors using experimental, numerical and analytical approaches. With reference to
Figure 1, the basic time-averaged flow can be summarized as follows. Fluid near the rotating
disks is dragged circumferentially due to viscous shear. Similarly, viscous shear at the fixed
enclosure wall decelerates the circumferential component of motion in its vicinity. The radial
pressure gradient induced by this slower circumferential motion is unable to produce the
necessary centripetal acceleration that would maintain the flow in purely circumferential
motion. From the point of view of a rotating frame of reference, the pressure gradient force
acting radially inward is unable to balance the centrifugal force acting radially outward on
fluid near the rotating disks. As a result, boundary (or Ekman) layers containing fluid that
has both radial and circumferential components of motion develop on the disks. The fluid
driven outward in the Ekman layers by the imbalance in radial forces is replaced by an axial
flow from the core that can only be maintained through the establishment of an inward-di-
rected radial flow. Near the fixed enclosure, the fluid thrown radially outward in the Ekman
layers is redirected in the axial direction along the enclosure wall, and then radially inward,
back into the core. Combined with the circumferential spin, this motion produces a pair of
toroidal vortices in the interdisk space. The bulk of this study is concerned with the stability
of this toroidal vortex pair. In practical applications, a small radial clearance exists between
the rim of a rotating disk and the stationary enclosure. This radial gap is neglected in most of
the present calculations, but the effect of the simplification on the computed flow fields is
assessed.

Early experimental studies of flows in disk drives were performed by Lennemann [1] and
Kaneko et al. [2], using flow visualization in configurations which were geometrically and
dynamically similar to the present one. These authors observed a region of laminar flow near
the hub, separated from a region of turbulent flow near the enclosure wall, with a polygonally
shaped boundary between the two rotating at about 80% of the disk angular velocity.
Subsequently, Abrahamson et al. [3] observed three similar regions of flow that they referred
to as an ‘inner’ region in solid body rotation near the hub, an ‘outer’ region containing foci of
intensified axial component of vorticity, and a boundary layer along the enclosure wall. The
foci of vorticity were distributed periodically in the circumferential direction and rotated at
about 75% of the disk angular velocity. Their number was observed to decrease with
increased disk spacing or rotation velocity.

Laser–Doppler velocimeter (LDV) measurements made by Schuler et al. [4,20], Tzeng and
Humphrey [5] and Humphrey et al. [6] reveal maxima in the radial profiles of the root mean
square of the circumferential velocity component. The maxima were attributed to large
oscillations produced by the periodic passage of the vortical foci. Analysis of the data in
Humphrey et al. [6] suggests that the number of foci is even and decreases in a stepwise
manner with increasing Reynolds number. For the special case of axisymmetric steady
motion, Schuler et al. [4] present a theoretical analysis based on scaling considerations. With
reference to Figure 1, the analysis shows that fluid motion in the interdisk space can be
divided into five regions: (i) a region essentially in solid body rotation near the hub; (ii) a
region of strongly sheared fluid near the fixed enclosure wall; (iii) a pair of Ekman layers,
developing on the facing surfaces of the two disks; (iv) a core region of potential flow,
characterized by moderate velocity gradients in the radial direction and negligible gradients in
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the axial direction; and (v) an axially aligned detached shear layer (or Stewartson layer)
that allows the transition between the three-dimensional motion in the potential core and
the region of flow in solid body rotation.

The flow visualization and LDV measurements of Humphrey and Gor [7] confirm the
scaling results of Schuler et al. [4] for the thickness and radial location of the detached
shear layer. They also found that, beyond a critical value of the Reynolds number which
depends on the interdisk spacing, the detached shear layer oscillates axially in the cross-
stream (r–z) plane. The unsteadiness of the detached shear layer and the fluid around it is
believed to originate at the enclosure sidewall, where the streams in the turning Ekman
layers collide. Humphrey and Gor [7] postulated a connection between the periodic oscilla-
tions of the cross-stream flow and the circumferentially distributed vortical foci. This was
subsequently verified by the numerical calculations of Humphrey et al. [6]. In both of these
studies, the onset of unsteadiness is associated with a two- to three-dimensional transition
in flow structure. Experimental measurements suggest that this occurs at approximately
Re#4730 for G=0.186, and Re#4070 for G=0.279.

A theoretical expression for predicting the torque required to spin one or more disks in a
fixed cylindrical enclosure, with or without interdisk obstructions, was derived by
Humphrey et al. [8]. The expression correlates the available data to within 5–20%, depend-
ing on the configuration geometry and Reynolds number. Using numerical calculation,
these authors also show the extent to which imposing a radial ventilation condition (blow-
ing or suction) affects the stability of the interdisk flow and the associated power dissipa-
tion.

Other numerical investigations of unobstructed flows between co-rotating disks in cylin-
drical enclosures include the axisymmetric steady flow cases investigated by Chang et al. [9]
and Tzeng and Fromm [10] in the laminar regime, and by Chang et al. [11] and Tzeng and
Humphrey [5] in the turbulent regime. However, the most interesting numerical results
correspond to the two- and three-dimensional unsteady flow cases calculated by Humphrey
et al. [6] for the experimental conditions investigated by Schuler et al. [4]. This study covers
a range of Reynolds numbers in which the flow is laminar but experiences a transition from
steady axisymmetric motion to unsteady three-dimensional motion at approximately Re=
22 000. The three-dimensional calculations show that the pair of toroidal vortices in the
interdisk space acquire a sinuous (slinky-like) shape that varies with time and position in
the circumferential direction. The result is that the symmetry of the motion about the
interdisk mid-plane is broken by alternating periodic crossings of this plane by the distorted
toroidal vortices, with the speed of the wave driving this motion being smaller than the
disk speed of rotation, as observed experimentally. A contour map of the axial vorticity
component projected on the interdisk mid-plane reveals an even integer number of circum-
ferentially periodic foci. A model for the unsteady periodic three-dimensional flow is pro-
posed in which the presence of the vortical foci is intimately connected to the variation of
the circumferential velocity component in the (r–u) plane that, in turn, is linked to the
circumferential variation of the axial velocity component. The model establishes a definite
connection between the cross-stream flow and the circumferentially distributed foci of axial
vorticity, as had been postulated by Humphrey and Gor [7]. The interpretation of the
three-dimensional calculations, together with experimental data from previous works, led
Humphrey et al. [6] to suggest that the transition from a steady axisymmetric flow to an
unsteady three-dimensional wavy flow may be due to a secondary shear instability of the
type associated with Dean vortex flow [12].
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1.2. Objecti6es of this study

The main objective of this study is to calculate and interpret the unobstructed rotating disk
flow configurations investigated by Humphrey and Gor [7] and Humphrey et al. [6] using a
more refined three-dimensional grid and a more systematic approach than presented in the
latter reference. These authors examined geometries corresponding to the present ones, except
that the disk rim–enclosure wall gap was a/H=0.28, where a is the disk rim–enclosure wall
clearance and H is the interdisk spacing, and in the experiment, the disk thickness was
b/H=0.20. In the bulk of the present work, a/H=0 and b/H=0. Nevertheless, a case
corresponding to the experimental values of a/H and b/H is examined for the influence on the
interdisk flow resulting from the boundary conditions imposed in the gap. A related objective
is to compare the experimentally determined and numerically calculated dependence of the
number and distribution of vortical foci as a function of the interdisk spacing, G, and the disk
speed of rotation, Re. Both two-dimensional (axisymmetric) and three-dimensional flow
conditions are examined in this study.

2. NUMERICAL PROCEDURE

2.1. Conser6ation equations and boundary conditions

The mass and momentum conservation equations for a constant-property flow, written for
the fixed cylindrical co-ordinate system shown in Figure 1, with u, 6 and w being the radial,
circumferential, and axial components of the velocity vector, are given by:
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For the case of axisymmetric two-dimensional flow, Equations (1)–(5) are simplified by
setting (/(u=0. Noting that the origin for the z-co-ordinate is located on the interdisk
mid-plane, the boundary conditions are:

(a) Rotating disk surfaces: u=w=0 and 6=Vr.
(b) Rotating hub surface: u=w=0 and 6=VR1 (where R1 is the hub radius).
(c) Enclosure wall surface: u=6=w=0.
(d) Disk rim–enclosure wall gap: Two types of boundary conditions are explored, symmetry

and periodicity. Both conditions are compatible with the assumption of an infinite stack of
disks. Symmetry is imposed by setting (u/(z=(6/(z=w=0 at z=9 (H+b)/2 in the
gap. Periodicity is imposed by requiring {u, p}z= (H+b)/2={u, p}z= − (H+b)/2, where u is the
velocity vector and p is the pressure including the gravitational body force terms.
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(e) In the three-dimensional calculations, the boundary condition in the circumferential
direction, imposed by the geometry of the problem, is periodicity, with a period of 2p ; i.e.
{u, p}u=0={u, p}u=2p. In the axisymmetric calculations there is no circumferential varia-
tion of the velocity, therefore (u/(u=0 and the simplified equations are solved for only
one (r–z) plane.

For each G, the first axisymmetric flow calculation at the lowest Reynolds number is started
from rest. Subsequent axisymmetric calculations for a given G at increasingly higher values of
the Reynolds number are started from an instantaneous converged solution of the flow field
obtained at the immediately preceding (lower) Reynolds number. Similarly, the first three-di-
mensional flow calculations, with G=0.186 and Re=23 150 and with G=0.279 and Re=
15 430, respectively, are started from rest. The higher and lower Reynolds number cases for
G=0.279 are started from an instantaneous converged three-dimensional solution of the
intermediate case with Re=15 430.

Calculations are performed in the physical space using the properties of air at 25°C, where
r=1.177 kg m−3 and m=1.853×10−5 kg ms−1. However, for the purpose of presenting
results, the following non-dimensional variables are defined:
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2.2. Summary of the solution algorithm

Calculations of the flow are performed using the CUTEFLOWS numerical procedure [6].
This program calculates unsteady, three-dimensional, constant-property flows in Cartesian or
cylindrical co-ordinates. The algorithm is based on a finite difference representation of the
conservation equations, which is explicit and second-order-accurate in space and time. A
detailed exposition of the finite differencing practices and solution methodology of the
numerical algorithm is available in Reference [13], including rigorous tests pertinent to the
present flow. A very brief summary of the algorithm follows.

The finite difference equations are derived using a staggered grid control volume formulation
of the conservation equations in terms of the primitive variables of velocity and pressure. The
continuity equation is integrated over a scalar control volume, and the three momentum
equations are integrated over respective (staggered) velocity component control volumes. The
derivatives in the diffusion terms are discretized using second-order-accurate central difference
approximations, whereas the velocities in the convection terms are interpolated to the faces of
the control volumes by means of the quadratic upstream weighted scheme proposed by
Leonard [14]. This scheme is formally third-order accurate and has good stability properties.

The numerical solution of the resulting time-dependent system of ordinary differential
equations is obtained using a second-order accurate, explicit, Runge–Kutta predictor-corrector
method (RK2). The numerical procedure is globally second-order accurate, but does not
require the storage of both velocity and pressure fields at two previous time levels. The strategy
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followed to calculate the pressure field is based on an idea formulated by Chorin [15], wherein
the velocity field at each new time step is decomposed into two contributions, one involving
and the other not involving the pressure field. The pressureless contribution is calculated
directly using the RK2 algorithm. The pressure contribution is calculated by solving the
discrete Poisson equation for the pressure that results from the imposition of the divergence-
free condition for the velocity field (mass conservation equation) at the end of each half-time
step. This second step is achieved through the use of a conjugate gradient procedure.

2.3. Additional code testing

The extensive testing of the numerical algorithm has been discussed in Humphrey et al. [6].
However, because it is important to establish confidence in the accuracy of the procedure as
applied to the present problem, we mention two specific tests documented in Reference [13].
The first test consists of the buoyancy-assisted flow past a backward-facing step in a vertical
channel. It is implemented according to the benchmark specifications of Blackwell and Armaly
[16]. The reader is referred to that reference for a description of the problem and the results
obtained by various authors. In particular, the velocity and temperature results obtained by
Iglesias et al. [17] are in excellent agreement with the reference standard.

The second test corresponds to one of the experimental cases investigated by Szeri et al. [18].
It provides axial profiles of the circumferential and radial velocity components measured with
an LDV at various radial locations for the flow of water in the space between two rotating
disks. With reference to Figure 1, the dimensions of the experimental apparatus are: R2=25.4
cm, R1=1.69 cm, and H=1.26 cm. For the test discussed here, the bottom disk and the
enclosure wall rotate at 2.72 rpm while the top disk and central hub are stationary. The
Reynolds number of the flow based on the radius and angular velocity of the rotating disk is
Re=21 260. After preliminary grid testing, an 80×34 (r–z) grid was used in the final
calculation, with an axisymmetric condition imposed in the circumferential direction. Figure 2
compares measured and calculated velocity component profiles. The agreement between the
two sets of velocity data is excellent, with somewhat less satisfactory agreement obtained for
the radial velocity component. This relatively small discrepancy is attributed to an unavoidable
uncertainty associated with the numerical implementation of the experimental exit flow
boundary condition [13].

2.4. Calculation grids

For the configurations of interest here, the grid nodes are distributed non-uniformly
throughout the calculation domain in order to resolve the strongly sheared regions of the flow.
These regions are: the Ekman layers along the respective disk surfaces, the shear layer along
the fixed cylindrical enclosure wall, and the detached shear layer lying between the region of
flow in solid body rotation and the fully three-dimensional potential core. Estimates of the
location and size of these regions provided in References [4,6,7] were used to construct the
present grids. This approach permits an effective distribution of nodes while avoiding
unnecessary refinement where velocity gradients are weak, e.g. in the solid body rotation
region. Because the thickness of the shear layers varies with disk angular velocity, and because
all the grids are generated to accommodate at least five nodes in the various shear layers, the
grids differ among the cases calculated. However, the non-uniform distribution of nodes is
similar in all cases [13].

The axisymmetric calculations were performed on a 70×40 (r–z) grid when G=0.186 and
a 70×50 (r–z) grid when G=0.279. A grid dependence study was performed for two of the
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Figure 2. Axial profiles at five radial positions of non-dimensional (a) circumferential and (b) radial velocity
components. The top disk (at Z=0.5) and the central hub (at R=0) are stationary, whereas the bottom disk (at
Z= −0.5) and the enclosure wall (at R=1) rotate with Re=21 259. Solid lines correspond to numerical results and

symbols to the experimental data of Szeri et al. [18].

axisymmetric cases considered. For the first case, with G=0.186 and Re=23 150, an oscilla-
tory periodic flow was calculated on the 70×40 grid and on an 80×50 (r–z) grid. The
frequency and magnitude of the oscillations were found to differ by less than 5% and 2%,
respectively, and the average torque coefficient showed a discrepancy of less than 0.1% between
these two grids. For the second case with G=0.279 and Re=11 570, a steady flow was
calculated on the 70×50 (r–z) grid and on an 80×60 (r–z) grid. The comparison between
velocity profiles for these two grids was excellent, and the same torque coefficient was
obtained.

Due to limited computer time and storage, the same number of nodes in the r–z plane could
not be used for the three-dimensional calculations. Consequently, coarser cross-stream grids
were set, consisting of 56×26 (r–z) nodes when G=0.186 and 56×36 (r–z) nodes when
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G=0.279. Axisymmetric calculations performed on these grids yielded results estimated to be
within 5–7% of grid independence and in excellent qualitative agreement with the more refined
grids above. The u grid consisted of 48 nodes uniformly distributed in the circumferential
direction. Because of the limitations referred to, it was not possible to perform meaningful grid
refinement tests for the u direction. However, calculations by Herrero (personal communica-
tion, 1994), obtained with the CUTEFLOWS program for the flow configuration of Figure 1,
with H=9.53 mm, R1=56.4 mm, R2=105 mm, a=0 and Re=20 000, show that, whereas
the details of the calculated flow field depend on the degree of u refinement, all three-dimen-
sional features of the unsteady flow are correctly captured using 48 nodes in the u direction.
The present three-dimensional grid, for G=0.186 is 1.5 times more refined in the u direction
and 1.72 times more refined globally than the grid used in [6].

The distribution of grid nodes sets an upper limit on the allowable time step, Dt, used by the
present explicit calculation procedure. A typical time step, Dt=10−4 s, was used when it was
shown that smaller values had a negligible influence on the calculated results. The numerical
evaluation of one time step on the grids used typically required between 5.5 and 7.5 s.

3. RESULTS AND DISCUSSION

The flow configuration of interest is investigated with respect to the aspect ratio and the
Reynolds number; the former by varying the interdisk spacing, H, and the latter by varying the
rotation rate, V, since the radial dimensions of the disks and the fluid properties are kept
constant. The strategy used in the investigation is as follows. Fixing the aspect ratio, the
Reynolds number is varied over a prescribed range. As the Reynolds number varies, variations
may occur in the qualitative structure of the solutions for certain values of this parameter.
These are called bifurcations, and they involve changes in the number of solutions, as well as
in their stability.

The configuration dimensions are given in Figure 1 and correspond to values of G=0.186
and 0.279, respectively. The rotation rates investigated are: 50, 100, 150, 200 and 300 rpm,
corresponding to Re=3858, 7715, 11 570, 15 430 and 23 150. The radial clearance between the
rim of a disk and the cylindrical enclosure wall is taken as a=0 in most of the calculations.
Axisymmetric calculations are also performed for the configuration of Figure 1, with a=2.7
mm, b=1.91 mm and H=9.53 mm (G=0.186) for rotation rates of 100 and 200 rpm
(Re=7335 and 14 670). We now present and discuss the results of the axisymmetric and
three-dimensional calculations for the various cases considered. The results show major
differences between the characteristics of the flow for the two aspect ratios.

3.1. Aspect ratio G=0.186

3.1.1. Two-dimensional (axisymmetric) flow. For Re515 430, the axisymmetric flow reaches
a steady symmetric state with respect to the interdisk mid-plane, irrespective of the initial
calculation condition or the imposition of perturbations. The flow perturbation consists of a
5% increase in the rotational speed of the upper disk (to rotate at 1.05 V) and a 5% decrease
in the rotation of the lower disk (to rotate at 0.95 V) for a period of time usually
corresponding to five revolutions of the disks. This perturbation is consistently axisymmetric,
but breaks the flow symmetry about the mid-plane in the axial direction. The perturbation
decays rapidly and the calculated flow field attains the symmetric steady state presented in
Figure 3. (Note that the velocity vectors in the figure are plotted only for alternate grid nodes
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in both co-ordinate directions, and a reference vector of non-dimensional magnitude 0.1 is
shown.) In the contour plots, solid lines represent positive values of the variable and dashed
lines represent negative values. In the streamline plot, a clockwise flow recirculation is
represented by negative values of the streamfunction, defined in Equation (9).

In contrast, the axisymmetric flow at Re=23 150 oscillates periodically about the interdisk
mid-plane. Figure 4 shows the flow field at an instant in time. The oscillation develops without
the imposition of a perturbation. Figure 5 shows the time variation of the non-dimensional
axial velocity component at a monitoring point located on the interdisk mid-plane. Due to the
periodic change in sign of the axial velocity component with respect to the mid-plane, its
frequency is half that of the other two velocity components and pressure which do not change
sign. Power spectra of these time series (calculated using data for Vt]150 only) reveal a pair
of dominant frequencies in this flow, namely 2pf/V=0.83 for U and V, and 0.415 for W.
Harmonics arise in the spectra for U and V.

Figure 3. Plots of the axisymmetric steady cross-stream (r–z) plane flow for G=0.186 and Re=15 430: (a)
cross-stream velocity vectors; (b) circumferential velocity contours; (c) circumferential vorticity contours; and (d)

cross-stream flow streamlines.
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Figure 4. Plots of the axisymmetric unsteady cross-stream (r–z plane) flow at a particular instant in time for G=0.186
and Re=23 150. The flow is oscillatory periodic everywhere about the interdisk mid-plane: (a) cross-stream velocity
vectors; (b) circumferential velocity contours; (c) circumferential vorticity contours; and (d) cross-stream flow

streamlines.

3.1.2. Effects of disk-enclosure gap and disk thickness. Axisymmetric calculations were also
performed for the configuration shown in Figure 1, with R1=56.4 mm, R2=105 mm,
H=9.53 mm, a=2.7 mm and b=1.91 mm, in order to assess the effects of the disk
rim–enclosure wall gap on the flow. These dimensions yield the same aspect ratio, G=0.186,
as the previous configuration with a=0 and R2=107.7 mm. This case was calculated for
Re=7335 and 14 670. Two boundary conditions (described above) were explored for the gap:
symmetry and periodicity. For Re=7335, the same steady state solution was obtained
irrespective of the gap boundary condition. For Re=14 670, the flows predicted differed for
the two boundary conditions, but both were oscillatory periodic, in contrast to the steady
symmetric flow calculated for Re=15 430 with a=0 and R2=107.7 mm.
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Instantaneous circumferential vorticity contours for the axisymmetric oscillatory flow calcu-
lated at Re=14 670 using the periodic boundary condition in the gap are shown in Figure 6
at four instants in time. A significant difference between the flows calculated using the two
respective gap boundary conditions pertains to the radial extension of the solid body rotation
region. The penetration of this region radially outward is larger for the flow with the symmetry
boundary condition in the gap than for the flow with the periodic boundary condition
imposed. The solution obtained using the periodic boundary condition yields a location of the
detached shear layer (see Figure 1) that closely matches the location predicted by the
experimental correlation of Humphrey and Gor [7].

Another striking difference between the flows calculated using the two different gap
boundary conditions arises with respect to the magnitude of the axial oscillation of the
stagnation point marking the location on the enclosure wall where the redirected Ekman layers
collide. The stagnation point oscillates with a higher amplitude when the symmetry condition
is imposed in the gap. For the periodic boundary condition, the stagnation point oscillates
closer to the mid-plane and the meandering of the radial jet emerging from the enclosure wall
region is smaller. This second condition is in closer accord with experimental observations and
with the axisymmetric oscillatory flow calculated where a=0 and Re=23 150.

For both sets of boundary conditions, the resulting flows display small recirculation regions
in the gap. The recirculation regions oscillate along the enclosure wall and, in the case of the
flow calculated using the periodic boundary condition, detach from the disk rim. These
motions induce additional frequencies in the power spectra of the monitoring variables. For
the periodic boundary condition their frequency is considerably higher than for the symmetry
boundary condition, and there are fewer harmonics in the power spectra. With the symmetry
boundary condition imposed in the gap, these oscillations are not exactly symmetric about the
interdisk mid-plane. This is in contrast with the periodic boundary condition, for which
symmetric oscillations are obtained [13].

3.1.3. Three-dimensional (non-axisymmetric) flow. Three-dimensional calculations were per-
formed for a configuration very similar to that investigated numerically by Humphrey et al. [6],
in which the effects of the disk rim–enclosure wall gap were considered but the thickness of
the disks was neglected. The configuration is defined by setting R1=56.4 mm, R2=105 mm,
a=2.7 mm, H=9.53 mm and b=0 in Figure 1, and fixing a symmetry boundary condition

Figure 5. Time variation of the axial velocity component at a monitoring point with co-ordinates R=0.573 and Z=0
for the axisymmetric unsteady flow, with G=0.186 and Re=23 150.
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Figure 6. Contours of the circumferential vorticity component at four instants in time for the axisymmetric oscillatory
periodic flow corresponding to the configuration of Figure 1 with the periodic boundary condition imposed in each
gap (R1=56.4 mm, R2=105 mm, a=2.7 mm, b=1.91 mm), G=0.186 (H=9.53 mm), and Re=14 670: (a) Vt=0
(arbitrarily chosen); (b) Vt=1.68; (c) Vt=3.14; (d) Vt=5.86. The contour levels correspond to vu=35, 30, 25, 20,

15, 10, 5, 2.5 and 1.

in the gap. The configuration has been calculated in this study for the same aspect ratio and
rotational speed (300 rpm, in this case corresponding to Re=23 150), but setting R2=107.7
mm and a=0 to provide a reference for comparison with the results obtained for the flow
configuration in which G=0.279, presented below. The present calculation is performed on a
grid 1.5-fold more refined in the circumferential direction than the 31×41×32 (r–z–u) grid
used by Humphrey et al., who predict four foci of intensified axial vorticity in a prematurely
terminated calculation with Re=22 200 and six foci in a converged calculation with Re=
44 400.
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Results of the present converged calculation in the form of instantaneous contours of the
axial vorticity component, vz, on the interdisk mid-plane are shown in Figure 7. (By converged
we mean that the present flow acquired a steady periodic state with primary oscillation
frequencies corresponding to 2pf/V=3.4 for the radial and axial velocity components and
2pf/V=1.7 for the circumferential). The contour levels plotted were specifically selected to
display the circumferentially periodic foci of positive axial vorticity described by Humphrey et
al. [6]. Large negative values of vz (the dashed lines in the figure) arise due to the action of
viscous shear along the fixed enclosure wall and are confined to the wall shear layer. In the
region of solid body rotation, vz assumes small positive values up to the location of the
detached shear layer, where it drops abruptly to negative values. In the potential flow region
the values of vz range from −0.5 to 0.5, approximately, and the positive axial vorticity
component is concentrated in eight circumferentially periodic foci. As described by Humphrey
et al., the foci are due to the radial/circumferential variations of the circumferential velocity
component. Experimentally, their number is believed to be ten in the range 20 000BReB
40 000. Apart from the number of foci and other details resolved on the present finer grid, the
characteristics of this flow case agree with the findings of Humphrey et al. [6].

3.2. Aspect ratio G=0.279

3.2.1. Two-dimensional (axisymmetric) flow. The cases in this section correspond to the
configuration of Figure 1, with R1=56.4 mm, R2=107.7 mm, a=0 and H=14.3 mm. For all
values of the Reynolds number explored, the resulting flow reaches a steady state. At the
lowest Reynolds number, Re=3858, the flow is symmetric, as for the case where G=0.186,
when ReB15 430. A calculation for Re=5788 also reveals a steady symmetric flow of similar

Figure 7. Instantaneous contours of the axial vorticity component on the interdisk mid-plane for the three-dimen-
sional unsteady flow with G=0.186 and Re=23 150. The contour levels correspond to vz= −20, −5, −1, 90.5
and 90.1. In this and subsequent plan views, the inner circle in the figure represents the hub periphery. The hub and

disks rotate in the counterclockwise direction.
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Figure 8. Plots of the axisymmetric steady cross-stream (r–z plane) flow for G=0.279 and Re=15 430: (a)
cross-stream velocity vectors, (b) circumferential velocity contours, (c) circumferential vorticity contours, and (d)

cross-stream flow streamlines.

characteristics. However, between Re=7715 and Re=23 150, the flow loses its symmetry
about the interdisk mid-plane while approaching a steady state. Figure 8 shows the final steady
cross-stream (r–z plane) motion for Re=15 430. In the figure, the velocity vectors are plotted
only for alternate grid nodes in each direction. Figure 9 shows the time variation of the axial
velocity component at a monitoring point located on the interdisk mid-plane. This plot,
corresponding to Re=7715, shows a smooth evolution of the flow towards the asymmetric
steady state ultimately acquired.
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The results in Figure 8 correspond to one of two solutions found for the case where
G=0.279 and Re=15 430. The prediction of pairs of flow fields that are mirror images of each
other was typical. Of the two solutions, the one obtained seemed to be an arbitrary outcome,
even when the initial condition for the calculation was a deliberately imposed, slightly
asymmetric flow field. (The axisymmetric disk-driven perturbation described at the beginning
of Section 3.1 was applied to every developed flow field. When the perturbation was
discontinued, the flow evolved, with equal probability, either to its original solution or to the
mirror image of that solution.) Although the calculated flow in this study has not been
experimentally observed in rotating disk systems, similar asymmetric solutions have been
found to be physically realizable in Taylor–Couette flow experiments [19]. The imposed
axisymmetry constraint may play an important role in determining the flow structure. The
three-dimensional calculations presented below show that when this constraint is relaxed, the
calculated flow oscillates about the interdisk mid-plane, as observed in previous studies [7].
Calculations not shown here, carried out in a flow configuration with G=0.279 but including
the disk rim–enclosure wall gap and the disk thickness (R1=56.4 mm, R2=105 mm, a=2.7
mm, H=14.3 mm and b=1.91 mm), lead to the conclusion that these geometrical features are
probably not responsible for the particular behavior found [13].

3.2.2. Three-dimensional (non-axisymmetric) flow. With the aim of finding similarities
between flows with different aspect ratios, we consider the alternative definition of the
Reynolds number, ReH (=VR2H/6), which should be more representative of the cross-stream
motion characteristics. The value of ReH where G=0.279 and Re=15 430 is ReH=2049. This
value of ReH is virtually identical to that of the three-dimensional flow, with G=0.186 and
Re=23 150 (ReH=2048) presented in the previous section. Therefore, a calculation of the flow
with G=0.279 and Re=15 430 is expected to yield a three-dimensional solution.

Figure 9. Time variation of the axial velocity component at a monitoring point with co-ordinates R=0.575 and Z=0
for a flow with G=0.279 and Re=7715. Below Vt#200, the flow is steady and symmetric with respect to the

interdisk mid-plane. Above Vt#200, it is steady and axisymmetric with respect to the mid-plane.
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A preliminary calculation of this flow was performed using the previously calculated
axisymmetric velocity field shown in Figure 8 as the initial condition. With no perturbation
applied to this initial flow field, the result after 0.1 s (one-third of a disk revolution) simply
confirmed the solution provided initially. Thus, the axisymmetric solution was shown to satisfy
the conservation equations even when the axisymmetric condition was relaxed. To break the
axisymmetry of the flow field, a non-axisymmetric perturbation (w �disk) was applied in the form
of a simulated wobble of the disks. The perturbation was imposed for 0.1 s and was
circumferentially sinusoidal, with an amplitude 5% of the local disk speed: w �disk=
0.05 V r sin u. This axial velocity was applied in phase to both disks in such a way that global
continuity was preserved. The result was an irregular (non-periodic) oscillatory flow field. The
calculation was repeated with a quiescent fluid as an initial condition, and a similar irregular
oscillatory flow was obtained. This ensured that the initial condition was not a factor in
determining the fully developed flow.

In contrast to the lack of symmetry about the interdisk mid-plane, which is exhibited by the
axisymmetric solution of this flow configuration, the fully three-dimensional solution reveals
oscillations which are on average symmetric about the mid-plane, even though they result in
irregular variations of the velocity components. Cross-stream vector velocity fields plotted in
Figure 10 for different r–z planes 22.5° apart show that the jet of fluid directed along the
radial direction from the enclosure wall into the potential core oscillates about the mid-plane.
The resulting extremes of this flow field are very similar to those predicted as steady states in
the axisymmetric calculations. The oscillations are stronger in this case (G=0.279 and
Re=15 430) than with the smaller aspect ratio (G=0.186 and Re=23 150), even though these
two cases possess the same ReH. Unsteadiness appears at a lower value of ReH, and the
magnitude of the oscillations is larger for the flow configuration with G=0.279. Humphrey
and Gor [7] have shown that for the same Reynolds number, the flow with larger G is more
prone to instability. These results suggest that ReH is not a sufficient parameter to guarantee
complete flow similarity.

Figure 11 shows the distribution of the axial vorticity component on the interdisk mid-plane.
This is irregular, and a single characteristic wave number cannot be determined. However,
even though the circumferential extensions of the vortical foci vary, an even integer number
(six) of well-defined foci is clearly identified. Two of the foci are elongated in the circumferen-
tial direction, as if each were going to split into sub-foci pairs. Figure 12(b) shows the
corresponding time variation of the axial velocity component for this irregular flow at a
monitoring point on the interdisk mid-plane.

3.2.3. Variation with Reynolds number (disk rotational speed). The effect on the developed
flow field due to changing the Reynolds number (by altering V) was considered by calculating
the cases with Re=7715 (100 rpm) and Re=23 150 (300 rpm). Isocontours of the axial
vorticity component on the interdisk mid-plane are plotted in Figure 13 for the higher Re case.
Contrasting these results with those for the three-dimensional flow where Re=23 150 and
G=0.186 (Figure 7), illustrates the increased disorderliness of the foci structure and location
with increasing G. For G=0.279 the number of foci appears to vary with time, ranging
between six and eight, and they are strongly distorted in both the circumferential and radial
directions. The six foci observed in the flow with Re=7715 and G=0.279 were much more
ordered [13]. Time variations of the axial velocity component at proximal monitoring points on
the interdisk mid-plane (Figure 12) show that past the initial transient, the flow evolves from
time periodic at Re=7715 to increasingly irregular for Re]15 430.
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Figure 10. Velocity vector fields at cross-stream (r–z) planes 22.5° apart for the three-dimensional unsteady flow with
G=0.279 and Re=15 430. For clarity, vectors are plotted on alternate grid nodes in the radial direction.

4. CONCLUSIONS

Experimental investigations show that in a critical range of Reynolds number the flow between
a pair of disks co-rotating in a fixed cylindrical enclosure evolves from steady axisymmetric to
unsteady three-dimensional. For a geometry with G=0.186 the range is 4580BReB4880 and
for one with G=0.279 it is 3700BReB4440. The unsteady three-dimensional flow is
characterized by the presence of foci of intensified axial components of vorticity distributed
periodically in the circumferential co-ordinate direction. The number of foci appears always to
be even and decreases in a stepwise manner with increasing Re. For a geometry with G=0.186
the number of foci is believed to be ten for 20 000BReB40 000, approximately. The foci
rotate at a speed ranging between 0.5 and 0.8 of the angular velocity of the disks, depending
on the details of the flow geometry. All the above values are for a configuration with a finite
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disk rim–enclosure wall spacing of a/H=0.28 or, equivalently, a/R2=0.026. However, the
evidence is that the number and distribution of the foci do not depend critically on the
presence of this gap for such small values.

Numerical calculations have been performed for the above two flow configurations, with
a/H=0. The calculations were first performed imposing the axisymmetry condition on the
conservation equations, and then with this condition relaxed. The following findings apply:

(1) For the case with G=0.186 and with axisymmetry imposed, the calculated flow is steady
and symmetric about the interdisk mid-plane when Re515 430. Attempts to perturb the
symmetry of the flow below this value of Re failed. When Re=23 150, the flow oscillates
periodically about the interdisk mid-plane without needing to be perturbed. Calculations with
Re=23 150 and with the axisymmetry requirement relaxed yield an unsteady three-dimen-
sional flow with eight foci of intensified axial vorticity evenly distributed in the circumferential
co-ordinate direction. Earlier three-dimensional calculations for this condition on a coarser
grid [6], yielded four foci when Re=22 000 and six when Re=44 400. In contrast, the
experimental evidence is for ten foci in the range 20 000B ReB40 000. The closer correspon-
dence with reality in the present work is attributed to the finer grids used.

(2) For the case with G=0.279 and with axisymmetry imposed, steady flow fields are
predicted for all values of the Reynolds number. In the range 77155Re523 150, however, the
flow evolves from a symmetrical to an asymmetrical state with respect to the interdisk
mid-plane. Numerical experiments for the case with Re=15 430 reveal that mirror-image
solutions (with respect to the mid-plane) can be arbitrarily obtained irrespective of the starting
flow conditions or the imposition of perturbations. Calculations with Re=15 430 and with the
axisymmetry requirement relaxed yield an unsteady three-dimensional flow with six foci of
intensified axial vorticity irregularly distributed in the circumferential co-ordinate direction.

Figure 11. Instantaneous contours of the axial vorticity component on the interdisk mid-plane for the three-dimen-
sional unsteady flow with: G=0.279 and Re=15 430. The contour levels correspond to vz= −10, −5, 91, 90.5

and 90.2.
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Figure 12. Time variation of the axial velocity component at a monitoring point located at u=0, Z=0 and proximal
R co-ordinates for G=0.279: (a) Re=7715 and R=0.523; (b) Re=15 430 and R=0.574; (c) Re=23 150 and

R=0.597.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 581–603 (1998)



LAMINAR FLOWS IN A FIXED CYLINDRICAL ENCLOSURE 601

The structure of the foci is also irregular and appears to vary with time. The onset of flow
unsteadiness for this case was induced by a numerically imposed wobble of the disks.
Further increasing the Reynolds number to 23 150 yields an even more disorderly time-de-
pendent flow with between six and eight foci of vorticity. In contrast, decreasing the
Reynolds number to 7715 restores an oscillatory periodic flow condition with six (more
evenly spaced) foci of axial vorticity. Unfortunately, for the case with G=0.279 there are
no measurements of the number of foci as a function of the Reynolds number. Neverthe-
less, the experimental evidence is that, for Re fixed, the number of foci decreases with
increasing G. This condition seems to be preserved in the present calculations.

The effect on the flow field due to the presence of a finite disk rim–enclosure wall gap
was investigated for the configuration with G=0.186 and the axisymmetry condition im-
posed. The size of the gap was set to a/H=0.28, corresponding to the geometrical condi-
tion of earlier experimental and numerical work. Two gap boundary conditions, flow
symmetry and periodicity, were explored. For Re=7335 essentially identical steady flow
fields are predicted for the two boundary conditions. For Re=14 670 the details of the flow
fields, especially near the disk rim, depend on the boundary condition specified, but both
cases yield oscillatory periodic flow. In contrast, the flow in the configuration with a=0
and Re=15 430 is steady and symmetric, indicating that the presence of a gap lowers the
threshold for transition to unsteady motion. Both sets of gap boundary conditions yield
small regions of recirculating cross-stream flow in and around the gap. These are observed
to oscillate axially along the enclosure wall and, in the case with the periodic boundary
condition, detach from the disk rim. Of the two conditions, the periodic boundary, yields
flow characteristics in better accord with experimental observations and numerical calcula-

Figure 13. Instantaneous contours of the axial vorticity component on the interdisk mid-plane for the three-dimen-
sional unsteady flow with G=0.279 and Re=23 150. The contour levels correspond to vu= −10, −5, 91, 90.5

and 90.02.
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tions with a=0. However, it is important to note that whereas the presence of a gap may
help trigger the transition from steady symmetric flow to unsteady three-dimensional flow at
lower values of Re than those calculated, the gap seems to have little if any effect on the
number of vortical foci generated because of its relatively small size.

In this study, special care has been taken to generate numerical results which, while not
free of false diffusion, are accurate enough to place all of the observations presented on a
firm basis.
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